本文共 1782 字,大约阅读时间需要 5 分钟。
线段树的表示如下,图中树的值表示区间值得和,线段树的表示和堆的表示方法相同。
代码
#include#define MAX_LEN 1000void build_tree(int arr[], int tree[], int node, int start, int end) { if (start == end) { tree[node] = arr[start]; return; } int mid = start + (end - start) / 2; int left_node = node * 2 + 1; int right_node = node * 2 + 2; build_tree(arr, tree, left_node, start, mid); build_tree(arr, tree, right_node, mid + 1, end); tree[node] = tree[left_node] + tree[right_node];}void update_tree(int arr[], int tree[], int node, int start, int end, int idx, int val) { if (start == end) { arr[idx] = val; tree[node] = val; return; } int mid = start + (end - start) / 2; int left_node = node * 2 + 1; int right_node = node * 2 + 2; if (idx >= start && idx <= mid) update_tree(arr, tree, left_node, start, mid, idx, val); else update_tree(arr, tree, right_node, mid + 1, end, idx, val); tree[node] = tree[left_node] + tree[right_node];}int query_tree(int arr[], int tree[], int node, int start, int end, int L, int R) { if (R end) return 0; else if (L <= start && end <= R) return tree[node]; else if (start == end) return tree[node]; int mid = start + (end - start) / 2; int left_node = node * 2 + 1; int right_node = node * 2 + 2; int sum_left = query_tree(arr, tree, left_node, start, mid, L, R); int sum_right = query_tree(arr, tree, right_node, mid+1, end, L, R); return sum_left + sum_right;}int main() { int arr[] = { 1,3,5,7,9,11 }; int size = 6; int tree[MAX_LEN] = { 0 }; build_tree(arr, tree, 0, 0, size - 1); for (int i = 0; i < 15; i++) printf("tree[%d]=%d\n", i, tree[i]); printf("\n"); update_tree(arr, tree, 0, 0, size - 1, 4, 6); for (int i = 0; i < 15; i++) printf("tree[%d]=%d\n", i, tree[i]); int s = query_tree(arr, tree, 0, 0, size - 1, 2, 5); printf("%d\n", s); return 0;}
转载地址:http://ocev.baihongyu.com/